5 research outputs found

    Fully Self-Supervised Class Awareness in Dense Object Descriptors

    Get PDF
    We address the problem of inferring self-supervised dense semantic correspondences between objects in multi-object scenes. The method introduces learning of class-aware dense object descriptors by providing either unsupervised discrete labels or confidence in object similarities. We quantitatively and qualitatively show that the introduced method outperforms previous techniques with more robust pixel-to-pixel matches. An example robotic application is also shown - grasping of objects in clutter based on corresponding points

    Behavior policy learning: Learning multi-stage tasks via solution sketches and model-based controllers

    Get PDF
    Multi-stage tasks are a challenge for reinforcement learning methods, and require either specific task knowledge (e.g., task segmentation) or big amount of interaction times to be learned. In this paper, we propose Behavior Policy Learning (BPL) that effectively combines 1) only few solution sketches, that is demonstrations without the actions, but only the states, 2) model-based controllers, and 3) simulations to effectively solve multi-stage tasks without strong knowledge about the underlying task. Our main intuition is that solution sketches alone can provide strong data for learning a high-level trajectory by imitation, and model-based controllers can be used to follow this trajectory (we call it behavior) effectively. Finally, we utilize robotic simulations to further improve the policy and make it robust in a Sim2Real style. We evaluate our method in simulation with a robotic manipulator that has to perform two tasks with variations: 1) grasp a box and place it in a basket, and 2) re-place a book on a different level within a bookcase. We also validate the Sim2Real capabilities of our method by performing real-world experiments and realistic simulated experiments where the objects are tracked through an RGB-D camera for the first task

    Safe Trajectory Sampling in Model-Based Reinforcement Learning

    Get PDF
    Model-based reinforcement learning aims to learn a policy to solve a target task by leveraging a learned dynamics model. This approach, paired with principled handling of uncertainty allows for data-efficient policy learning in robotics. However, the physical environment has feasibility and safety constraints that need to be incorporated into the policy before it is safe to execute on a real robot. In this work, we study how to enforce the aforementioned constraints in the context of model-based reinforcement learning with probabilistic dynamics models. In particular, we investigate how trajectories sampled from the learned dynamics model can be used on a real robot, while fulfilling user-specified safety requirements. We present a model-based reinforcement learning approach using Gaussian processes where safety constraints are taken into account without simplifying Gaussian assumptions on the predictive state distributions. We evaluate the proposed approach on different continuous control tasks with varying complexity and demonstrate how our safe trajectory-sampling approach can be directly used on a real robot without violating safety constraints

    Garbage Collection and Sorting with a Mobile Manipulator using Deep Learning and Whole-Body Control

    Get PDF
    Domestic garbage management is an important aspect of a sustainable environment. This paper presents a novel garbage classification and localization system for grasping and placement in the correct recycling bin, integrated on a mobile manipulator. In particular, we first introduce and train a deep neural network (namely, GarbageNet) to detect different recyclable types of garbage. Secondly, we use a grasp localization method to identify a suitable grasp pose to pick the garbage from the ground. Finally, we perform grasping and sorting of the objects by the mobile robot through a whole-body control framework. We experimentally validate the method, both on visual RGB-D data and indoors on a real full-size mobile manipulator for collection and recycling of garbage items placed on the ground
    corecore